Publications

  • Publications

    Article “Dividing the indivisible: Apportionment and philosophical theories of fairness” in Politics, Philosophy & Economics

    Philosophical theories of fairness propose to divide a good that several individuals have a claim to in proportion to the strength of their respective claims. We suggest that currently, these theories face a dilemma when dealing with a good that is indivisible. On the one hand, theories of fairness that use weighted lotteries are either of limited applicability or fall prey to an objection by Brad Hooker. On the other hand, accounts that do without weighted lotteries fall prey to three fairness paradoxes. We demonstrate that division methods from apportionment theory, which has hitherto been ignored by philosophical theories of fairness, can be used to provide fair division for indivisible goods without weighted lotteries and without fairness paradoxes.

    S. Wintein & H.C.K. Heilmann (2018). Dividing the indivisible: Apportionment and philosophical theories of fairness. Politics, Philosophy & Economics, 17(1), 51-74, 2018.

  • Publications

    Article “Theories of Fairness and Aggregation” in Erkenntnis

    We investigate the issue of aggregativity in fair division problems from the perspective of cooperative game theory and Broomean theories of fairness. Paseau and Saunders (Utilitas 27:460–469, 2015) proved that no non-trivial theory of fairness can be aggregative and conclude that theories of fairness are therefore problematic, or at least incomplete. We observe that there are theories of fairness, particularly those that are based on cooperative game theory, that do not face the problem of non-aggregativity. We use this observation to argue that the universal claim that no non-trivial theory of fairness can guarantee aggregativity is false. Paseau and Saunders’s mistaken assertion can be understood as arising from a neglect of the (cooperative) games approach to fair division. Our treatment has two further pay-offs: for one, we give an accessible introduction to the (cooperative) games approach to fair division, whose significance has hitherto not been appreciated by philosophers working on fairness. For another, our discussion explores the issue of aggregativity in fair division problems in a comprehensive fashion.

    S. Wintein & H.C.K. Heilmann (2018). Theories of Fairness and Aggregation. Erkenntnis.

  • Publications

    Article “How to be Fairer” in Synthese

    We confront the philosophical literature on fair division problems with axiomatic and game-theoretic work in economics. Firstly, we show that the proportionality method advocated in Curtis (in Analysis 74:417–57, 2014) is not implied by a general principle of fairness, and that the proportional rule cannot be explicated axiomatically from that very principle. Secondly, we suggest that Broome’s (in Proc Aristot Soc 91:87–101, 1990) notion of claims is too restrictive and that game-theoretic approaches can rectify this shortcoming. More generally, we argue that axiomatic and game-theoretic work in economics is an indispensable ingredient of any theorizing about fair division problems and allocative justice.

    H.C.K. Heilmann & S. Wintein (2017). How to be FairerSynthese, 194(9), 3475-99, 2017.